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Stepped wedge design (SWD) trials are cluster randomized trials that feature
staggered, unidirectional cross-over between treatment conditions. Existing lit-
erature on power for SWDs focuses primarily on designs with two conditions,
typically a control and an intervention condition. However, SWDs with more
than one treatment condition are being proposed and conducted. We present a
linear mixed model for SWDs with two or more interventions, including both
multiarm and factorial designs. We derive standard errors of the intervention
effect coefficients, and present power calculation methods. We consider both
repeated cross-sectional and cohort designs. Design features, with a focus on
treatment allocations, are examined to determine their impact on power.
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1 INTRODUCTION

Cluster randomized trials (CRTs) are trials in which groups of individuals, called clusters, are randomized to treatment
conditions. CRTs can use parallel designs, in which clusters receive only one treatment condition, or crossover designs,
in which clusters are assigned to a sequence of treatment conditions. A variation on the CRT crossover design is the
stepped wedge design (SWD).1 The most common SWDs involve unidirectional crossover in which clusters transition
from a control condition to an intervention condition at different prespecified times. Clusters are randomized to the
predetermined sequences.

SWDs have several advantages over parallel and crossover CRT designs. SWDs allow comparisons both within cluster
and across cluster, which can yield efficiency gains.2 It may be less costly and logistically easier to roll out the intervention
over time instead of all at once, as would occur in many parallel CRTs.3 Guaranteeing receipt of an intervention for all
clusters may make clusters more willing to participate or alleviate ethical concerns.2

Most research on the design and analysis of stepped wedge trials has focused on SWDs with one intervention condi-
tion contrasted with a control condition. There is a small but growing body of literature on SWDs with more than one
intervention condition. Grayling et al4 focused on studies in which there is a nested natural order of D interventions such
that intervention d consists of intervention d − 1 plus some additional factor. The authors discuss the optimization of
treatment sequence allocations and focus on optimal design for such trials. The variance of treatment effect estimates in
SWDs with nested interventions has also been studied.5 However, SWDs with multiple interventions that are not nested
within one another have not been well studied, and interaction effects also have not received much attention.6

SWDs with multiple treatment arms are being conducted despite a scarcity of methodological literature. There are
several examples of stepped wedge design trials that feature two interventions implemented alone and in combination, as
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in a 2 × 2 factorial design. These examples include a trial of the comparative effectiveness of two interventions to promote
human papillomavirus vaccination among adolescents,7 a study examining two interventions for reducing hyperbilirubi-
naemia in infants,8 and a study compared two interventions for addressing behavioral problems in children with cerebral
palsy.9 In these studies, clusters were assigned to sequences that could include periods spent in usual care, the two single
intervention conditions, and/or a combined condition.

There are also examples in the literature of several related single-intervention stepped wedge trials conducted simul-
taneously. The FallDem study used two stepped wedge trials to examine two interventions for improving the lives of
dementia patients,6,10 and Durovni et al conducted two separate SWD trials for tuberculosis screening.11,12 In some cases,
it might be advantageous to combine two separate trials with stepped wedge designs into one trial with multiple treatment
conditions, akin to a multiarm trial.

In this article, we consider stepped wedge design trials with more than one intervention, including both multiarm
designs, which involve a control and two or more treatment conditions, and factorial designs, in which interventions are
implemented alone and in combination. Multiarm trials have several advantages, such as allowing for direct comparison
of alternative treatments (comparative effectiveness) and resource savings due to “reusing” the same control condition
to compare to several interventions. Factorial designs also have potentially increased efficiency and can allow for the
estimation of interaction effects.13 Thus extending SWDs to incorporate multiarm and factorial design features could be
quite beneficial. We develop power analysis methods for such trials and examine factors that influence power for stepped
wedge designs with a normally distributed outcome variable.

The article is organized as follows. Section 2 introduces the models for the SWD with multiple treatment conditions
and develops power analysis methods. Section 3 uses examples to examine the influence of different design features on
power. Section 3 also presents results from a simulation study. Section 4 discusses the implications of our work, possible
extensions, limitations and future work.

2 METHODS

We first present a model for a stepped wedge design with a single intervention and then consider designs with any number
of interventions. We focus on designs with only two interventions and an interaction effect as designs with more than two
interventions have not yet been seen in practice. The section concludes with an overview of the derivation of the standard
errors of the estimated treatment effect coefficients, with details in Appendix S1.

2.1 Model specification

We begin with the classic stepped wedge design model with a single binary treatment factor.1 For a design with I clusters
observed at T times, and N different individuals per time per cluster, let Yijk be a continuous outcome for individual k in
cluster i at time j. The model for Yijk is

Yijk = 𝜇 + 𝛼i + 𝜓ik + 𝜈ij + 𝛽j + Xij𝜃1 + eijk, (1)

where 𝜇 is an intercept, 𝛼i ∼ N(0, 𝜎2
𝛼) is a random intercept for cluster i,𝜓ik ∼ N(0, 𝜎2

𝜓 ) is a random intercept for individual
k in cluster i, 𝜈ij ∼ N(0, 𝜎2

𝜈 ) is a random intercept for cluster i in time j, 𝛽j is a fixed effect for time j, Xij is a {0,1} indicator
for whether cluster i at time j receives treatment, 𝜃1 is the treatment effect, and eijk ∼ N(0, 𝜎2

e ). The total variance of an
individual level outcome is 𝜎2

y = 𝜎2
𝛼 + 𝜎2

𝜓 + 𝜎2
𝜈 + 𝜎2

e .
It is straightforward to expand this model to include multiple binary treatment factors.6 Assuming additive treatment

effects, the model with R treatment factors is

Yijk = 𝜇 + 𝛼i + 𝜓ik + 𝜈ij + 𝛽j +
R∑

r=1
Xijr𝜃r + eijk, (2)

where Xijr is a {0,1} indicator of whether cluster i at time j receives treatment r and 𝜃r is the treatment effect for treatment
r. For the remainder of this section, we take R = 2 for simplicity, with results generalizable to R > 2. Adding an interaction

 10970258, 2022, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9301 by U
niversity of C

alifornia - L
os A

nge, W
iley O

nline L
ibrary on [18/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1500 SUNDIN and CRESPI

effect 𝜃3, the model becomes

Yijk = 𝜇 + 𝛼i + 𝜓ik + 𝜈ij + 𝛽j + Xij1𝜃1 + Xij2𝜃2 + Xij1Xij2𝜃3 + eijk. (3)

Individual auto-correlation (IAC) is defined as the proportion of the individual-level variance (which in this
model is 𝜎2

𝜓 + 𝜎2
e ) that is time-invariant. In model (3), the IAC is 𝜋 = 𝜎2

𝜓∕(𝜎2
𝜓 + 𝜎2

e ). Setting 𝜋 = 0 yields a repeated
cross-sectional design. We can also define the cluster auto-correlation (CAC) as the proportion of cluster level variance
that is time-invariant. In this model, the cluster-level variance is 𝜎2

𝜈 + 𝜎2
𝛼 and CAC = 𝜎2

𝛼∕(𝜎2
𝜈 + 𝜎2

𝛼) = 𝜌a∕𝜌w.14,15 We also
define two intraclass correlation (ICC) values. The within-period ICC, Corr(yijk, yijk′ ) is now 𝜌w = (𝜎2

𝜈 + 𝜎2
𝛼)∕𝜎2

y and the
across-period ICC, Corr(yijk, yij′k′ ), is 𝜌a = 𝜎2

𝛼∕𝜎2
y .

Standard errors are needed to compute power. To derive standard errors, it is convenient to work with cluster-level out-
comes. Let Y ij⋅ = 1

N

∑N
k=1Yijk be the mean outcome of cluster i at time j across N individuals. The model for cluster-period

means with two treatments and an interaction term is

Y ij⋅ = 𝜇 + 𝛼i + 𝜓i + 𝜈ij + 𝛽j + Xij1𝜃1 + Xij2𝜃2 + Xij1Xij2𝜃3 + eij⋅, (4)

where eij⋅ = 1
N

∑N
k=1eijk ∼ N(0, 𝜎2

c = 𝜎2
e

N
) and𝜓i = 1

N

∑N
k=1𝜓ik ∼ N(0, 𝜎2

𝜁
=

𝜎2
𝜓

N
). In this model, the variance of a cluster-period

mean is Var(Y ij⋅) = 𝜎2
c + 𝜎2

𝛼 + 𝜎2
𝜁
+ 𝜎2

𝜈 , and Cov(Y ij⋅,Y ij′⋅) = 𝜎2
𝛼 + 𝜎2

𝜁
.

Define the outcome vector Y = (Y 11⋅,… ,Y iT⋅,… ,Y I1⋅,… ,Y IT⋅)′. Assuming clusters are independent, the
variance-covariance matrix of Y is a IT × IT matrix of the form

V =

⎡⎢⎢⎢⎢⎢⎣

V1 0 0 0
0 V2 … 0
0 0 ⋱ 0
0 0 … VI

⎤⎥⎥⎥⎥⎥⎦
,

with each T × T matrix Vi having structure

Vi =

⎡⎢⎢⎢⎢⎢⎣

𝜎2
c + 𝜎2

𝛼 + 𝜎2
𝜈 + 𝜎2

𝜁
𝜎2
𝛼 + 𝜎2

𝜁
… 𝜎2

𝛼 + 𝜎2
𝜁

𝜎2
𝛼 + 𝜎2

𝜁
𝜎2

c + 𝜎2
𝛼 + 𝜎2

𝜈 + 𝜎2
𝜁

… 𝜎2
𝛼 + 𝜎2

𝜁

⋮ ⋮ ⋱ ⋮

𝜎2
𝛼 + 𝜎2

𝜁
𝜎2
𝛼 + 𝜎2

𝜁
… 𝜎2

c + 𝜎2
𝛼 + 𝜎2

𝜈 + 𝜎2
𝜁

⎤⎥⎥⎥⎥⎥⎦
.

Some practitioners find that standardization of the model can be convenient for power calculations. To standardize
the model in (3), one divides through by 𝜎y. The cluster random intercept 𝛼i now has standardized variance 𝜌a, the
cluster-by-time random intercept 𝜈ij has variance 𝜌w − 𝜌a for 𝜌w > 𝜌a, the individual-level random intercept 𝜓ik has vari-
ance 𝜋(1 − 𝜌w) and the error term eijk has variance (1 − 𝜋)(1 − 𝜌w). Thus the variances can be specified in terms of the
parameters 𝜌w, 𝜌a and 𝜋. The matrix Vi will have diagonal elements 𝜌w + (1−𝜌w)

N
and off-diagonal elements 𝜌a +

𝜋(1−𝜌w)
N

.
Now we turn to the design matrix of the fixed effects. While 𝛽1 rather than 𝛽T is often set equal to zero when the model

is fit to data, we follow1 and set 𝛽T = 0 for identifiability. The choice is immaterial for power calculations. The (T + 3) × 1
regression coefficient vector for the fixed effects is

𝜼 =
[
𝜇 𝛽1 … 𝛽T−1 𝜃1 𝜃2 𝜃3

]′
.

The full IT × (T + 3) design matrix Z becomes

Z =

⎡⎢⎢⎢⎢⎢⎣

Z1

Z2

⋮

ZI

⎤⎥⎥⎥⎥⎥⎦
,
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where each matrix Zi has dimension T × (T+3) and takes the form

Zi =

[
1T

IT−1

0′
T−1

Xi1 Xi2 (X1X2)i

]
.

The elements of the vector Xi1 = (Xi11,Xi21,… ,XiT1)′ are indicators of whether cluster i at time j receives treatment 1,
the elements of Xi2 = (Xi12,Xi22,… ,XiT2)′ are indicators of receipt of treatment 2, and (X1X2)i is the Hadamard product
of Xi1 and Xi2, with a value of 1 if cluster i receives both treatments at time j and 0 otherwise. The matrix IT−1 contains
indicators for each time j from 1,… , (T − 1). The vector 0′

T−1 corresponds to time T. For designs with R > 2, Zi can be
expanded to include the additional indicators.

2.2 Power analysis

Inference for fixed effects in linear mixed models can be conducted using Wald tests or likelihood ratio tests. We focus on
Wald tests. For hypotheses of the form H0 ∶ 𝜂 = 0, where 𝜂 is a fixed effects coefficient, the Wald test statistic takes the
form 𝜂̂∕

√
Var(𝜂̂), where 𝜂̂ is the estimated coefficient, and has an approximate standard normal distribution when the

null hypothesis is true.16 The power to reject H0 for a specific true value of 𝜂, denoted 𝜂a, with Type I error rate 𝛼 and a
two-sided test, is approximately

P

(||||||
𝜂a√

Var(𝜂̂)

|||||| ≥ z1− 𝛼

2

||| 𝜂 = 𝜂a

)
,

where z1− 𝛼

2
is the (1 − 𝛼

2
)th percentile of the standard normal distribution.

To calculate power, we need an expression for Var(𝜂̂). We derive expressions for Var(𝜂̂) using the cluster-period mean
models in (4). We focus on models with R = 2 treatments and an interaction term assuming a factorial design; the results
are generalizable to R > 2 and multiarm trials as discussed in Section 4. Given the linear mixed model formulation, the
variance-covariance matrix of the estimated fixed effect coefficients has the form C = (Z′V−1Z)−1, where Z is the fixed
effects design matrix and V is the variance-covariance matrix of the outcome vector. Our approach is to find expressions
for the variances and covariances of treatment effect coefficient estimates, 𝜃̂1, 𝜃̂2, and 𝜃̂3. We do so by calculating Z′V−1Z
then invert it to get the elements of (Z′V−1Z)−1, corresponding to the variances and covariances of the treatment effect
coefficients.

Let Z be the IT × (T + 3) design matrix and V be the IT × IT variance-covariance matrix of the cluster-level outcomes.
Let 𝜎diag = 𝜎2

c + 𝜎2
𝜈 and 𝜎off = 𝜎2

𝛼 + 𝜎2
𝜁
, and for standardized models, 𝜎diag =

(1−𝜋)(1−𝜌w)
N

+ 𝜌w − 𝜌a and 𝜎off = 𝜌a +
𝜋(1−𝜌w)

N
.

Assuming clusters are independent, V has block diagonal structure with elements Vi = 𝜎2
diagIT + 𝜎2

off 1T1′T, where IT is a
T × T identity matrix and 1T is a T × 1 vector of 1’s. Using the Sherman-Morrison formula,17,18 we can obtain its inverse as

V−1
i = 1

𝜎2
diag

(
𝜎2

diag + T𝜎2
off

) [(
𝜎2

diag + T𝜎2
off

)
IT − 𝜎2

off 1T1′T
]
.

This matrix has off-diagonal elements
−𝜎2

off

𝜎2
diag(T𝜎

2
off +𝜎

2
diag)

and diagonal elements
(T−1)𝜎2

off +𝜎
2
diag

𝜎2
diag(T𝜎

2
off +𝜎

2
diag)

. Due to the block diagonal

structure of V, we have

Z′V−1Z =
I∑

i=1
Z′

iV
−1
i Zi,

where Zi is the T × (T + 3) part of the design matrix corresponding to cluster i. We can then rewrite

Z′
iV

−1
i Zi =

1

𝜎2
diag

(
𝜎2

diag + T𝜎2
off

) [(
𝜎2

diag + T𝜎2
off

)
Z′

iZi − 𝜎2
off Z′

i1T1′
TZi

]
. (5)
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We then use block matrix inversion techniques to solve for the submatrix corresponding to the coefficients of interest. A
full derivation is provided in Appendix S1.

In the case of a design with R = 2 interventions and no interaction term, a closed form solution for the variance of the
estimated intervention effects for Intervention 1 and 2 can be calculated using the inverse of a 2 × 2 matrix, with variances
written as

Var(𝜃̂1) =
l2 − z2 −

y2
2

fT
− 1

f+gT

(
w2 −

l2
2

T

)
(

l2 − z2 −
y2

2
fT

− 1
f+gT

(
w2 −

l2
2

T

))(
l1 − z1 −

y2
1

fT
− 1

f+gT

(
w1 −

l2
1

T

))
−
(

q1 −
y1y2
fT

− 1
f+gT

(
wXW − l1l2

T

))2 ,

Var(𝜃̂2) =
l1 − z1 −

y2
1

fT
− 1

f+gT

(
w1 −

l2
1

T

)
(

l2 − z2 −
y2

2
fT

− 1
f+gT

(
w2 −

l2
2

T

))(
l1 − z1 −

y2
1

fT
− 1

f+gT

(
w1 −

l2
1

T

))
−
(

q1 −
y1y2
fT

− 1
f+gT

(
wXW − l1l2

T

))2 ,

with all terms defined in Appendix S1. Standard errors are calculated by taking the square root of these variances. Closed
form solutions for the model with the interaction effect are found in Appendix S1.

The standard errors thus derived enable power calculations for hypothesis testing. In factorial and multiarm design
trials, there will typically be multiple hypotheses of interest. When multiple hypotheses are tested simultaneously, multi-
plicity adjustments should be taken into account in power analysis to control experimentwise Type I error. If a single-step
method such as Bonferroni is used, the power calculations can be adjusted by adjusting the significance level for each test.
Accounting for the use of other multiplicity adjustment procedures, such as the Hochberg or fixed sequence procedures,
can be more complex.19

The calculations also enable the testing of linear contrasts. For example, a comparative effectiveness hypothesis com-
paring two active treatments may involve the hypothesis H0 ∶ 𝜃1 − 𝜃2 = 0, which can be tested using the Wald statistic

(𝜃̂1 − 𝜃̂2)∕
√

Var(𝜃̂1 − 𝜃̂2), where Var(𝜃̂1 − 𝜃̂2) = Var(𝜃̂1) + Var(𝜃̂2) − 2Cov(𝜃̂1, 𝜃̂2) and the variance and covariances can be
obtained as described.

The power method described makes use of a normality-based z-test, which may not hold up well for a small number of
clusters. However, for the examples we present in the next section, there was no evidence of small-sample bias, suggesting
that this is not always an issue. The topic of small-sample bias corrections for stepped wedge designs has been explored
elsewhere.20,21

3 EXAMPLES

Since the formulas are complex, we present examples to illustrate how power is affected by design features of SWDs,
focusing on the impact of sequencing of treatment conditions within clusters. The examples in Sections 3.1 and 3.2
use standardized effect sizes and realistic but arbitrary values of standardized variance parameters. The examples in
Sections 3.3 and 3.4 use simple effect sizes (in original units) and variance parameter values derived from a real study.
For all examples, we set the experimentwise Type I error rate to 0.05 and use a Bonferroni correction when conducting
multiple simultaneous tests within the same design. Calculations were performed in R version 3.6.122 with code available
at https://github.com/phillipsundin/SWFD.

3.1 Two separate single-intervention SWDs vs a concurrent SWD

Several studies have conducted two related but separate single-intervention SWD trials.10,11 We explore potential advan-
tages of combining two single-intervention trials into one trial with two interventions, including efficiency gains and
comparative effectiveness.

Consider the two single-intervention SWD trials, each with six clusters and four time periods, in Figure 1A. Figure 1B
stacks the two designs into a single 12-cluster trial; such a design has been called a concurrent design.6 Figure 1C shows
a concurrent design with only 10 clusters. Let 𝛿1 and 𝛿2 denote the standardized effect sizes for interventions 1 and 2
compared to the control condition. We set 𝛿1 = 𝛿2 = 0.4, representing medium effect sizes.23 Within each design, power
for the two intervention effects is the same due to symmetry. We specify N = 15 individuals per cluster-period in a repeated
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F I G U R E 1 Examples of two single-intervention SWDs versus concurrent SWDs with two interventions. White cells indicate
cluster-periods in the control condition. Light and dark gray cells indicate treatment conditions for Interventions 1 and 2, respectively

F I G U R E 2 Comparison of power for either intervention effect for a single-intervention SWD, 12-cluster concurrent SWD and
10-cluster concurrent SWD for two values of IAC

cross-sectional design. Power for detecting an intervention effect in one of the single-intervention SWDs was calculated
using model (1); for the concurrent SWDs, power was calculated using model (2). Type I error was set to 0.05 for hypothesis
tests in the single-intervention SWDs and 0.025 for the concurrent designs. In these examples, we fix 𝜌w = 𝜌a, equivalent
to setting 𝜎2

𝜈 = 0, and examine power under two different values of 𝜋.
Figure 2 displays power for either intervention effect for the three designs as a function of 𝜌w. The convex shapes of the

power curves are similar to those observed for SWDs with only one treatment.2,24,25 For both values of 𝜋, the 12-cluster
concurrent design, which maintains the same total number of clusters as the two separate single intervention SWDs, has
power gains ranging from 0.10 to 0.13 compared to the other designs for the values of 𝜌w considered even with a reduced
Type I error rate. The 10-cluster concurrent design, which reduces the total sample size by about 17% compared to the
designs with 12 clusters, has power comparable to that of a single-intervention SWD when 𝜋 = 0.35; for 𝜋 = 0.05, power
for the 10-cluster concurrent design is at most 0.02 lower.

Another advantage of including two interventions in one study is the ability to directly compare them. This can be
accomplished using tests of linear contrast, which can be powered using our methods. Suppose we assume standardized
effect sizes of 0.30 and 0.70 for the two interventions compared to control, entailing a difference of 0.4 between them (a
difference this large may be unrealistic for some studies, but helps to illustrate the principle). We set 𝜌w = 𝜌a and 𝜋 = 0.05.
Type I error was set to 0.05/3= 0.0167 for each of three tests: the two intervention-to-control comparisons and comparison
between the two interventions. Figure 3 displays power for the linear contrast as a function 𝜌w. The relationship between
power and 𝜌w for the comparative effectiveness contrast is similar to that for the intervention-to-control hypothesis tests.
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1504 SUNDIN and CRESPI

F I G U R E 3 Power for comparison of two interventions in the concurrent SWDs

F I G U R E 4 Stepped wedge factorial design examples

We note that in a concurrent design, the interventions are conducted in parallel and thus the intervention-to-intervention
contrast is less susceptible to confounding by time than the intervention-to-control comparisons.

3.2 Factorial designs with additive treatment effects

Our methods enable power analysis for factorial designs, which can be highly efficient when effects are additive, that is,
when there is no interaction effect. To investigate stepped wedge factorial designs, we begin by comparing the 12-cluster,
4-period concurrent design in Figure 1B with designs that assign some cluster-periods to a combined condition. Figure 4A
shows a 12-cluster “late” factorial design in which all clusters transition to the combined condition in the last period.
Figure 4B shows an “earlier” factorial design with only ten clusters that introduces the combined condition earlier.
Additive intervention effects are assumed for these examples.

Both designs feature six cluster-periods in each single intervention condition and twelve cluster-periods in the com-
bined condition. We assume repeated cross-sectional observations, moderate effect sizes (𝛿1 = 𝛿2 = 0.4) and N = 15
individuals per cluster-period.

Figure 5 compares power for the main effect of each intervention for the three designs (Figures 1B and 4A,B) as a
function of 𝜌w for two values of the IAC. Power for the two main effects is identical due to symmetry. The 12-cluster “late”
factorial design has the lowest power for all values of 𝜌w and 𝜋. For 𝜌w < 0.02, the 12-cluster concurrent and 10-cluster
“earlier” factorial designs have similar power; for 𝜌w > 0.02, the 10-cluster “earlier” design has highest power while still
maintaining a 17% reduction in sample size compared to the concurrent design.

This example illustrates several points. First, as expected for a factorial design, when intervention effects are additive,
including a combined condition can increase efficiency and reduce the sample size requirement. However, the timing of
transitions to the combined condition matters. Simply assigning all clusters to the combined condition for the last period
reduced power compared to a concurrent design. Rather, the combined condition needs to be introduced earlier to realize
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SUNDIN and CRESPI 1505

F I G U R E 5 Comparison of power for main effects for three designs

efficiency gains. Further, if an interaction effect is present, the design in Figure 4A suffers from identifiability issues, as
the interaction effect would be perfectly collinear with the last time period.

3.3 Factorial designs with interaction effect

To study power for detecting an interaction, we consider hypothetical SWDs for evaluating two school-based interventions
to reduce obesity among children. The primary outcome will be age- and sex-standardized BMI z-score. Variance parame-
ter values were estimated using data from a previous study that measured BMI z-scores at three time points over 13 month
among 286 children at nine schools (unpublished data). A linear mixed model based on Equation (1) was fit to the these
data to obtain the estimates 𝜎2

e = 1.11, 𝜎2
𝜈 = 0.14, 𝜎2

𝜓 = 3.54, and 𝜎2
𝛼 = 0.24 with total variance 𝜎2

y = 5.29. On a standardized
scale, these values correspond to 𝜌w = (0.24 + 0.14)∕5.29 = 0.07, 𝜌a = 0.24∕5.29 = 0.05,𝜋 = 3.54∕(3.54 + 1.11) = 0.76 and
CAC = 0.24∕(0.24 + 0.14) = 0.63. The study is to be powered on detecting effect sizes of 1 on the z-score scale for each
intervention and an interaction effect of 0.5 (also on the z-score scale), corresponding to standardized effect sizes of
1∕

√
5.29 = 0.44 for main effects and 0.22 for the interaction effect. We note that the z-score outcomes are based on the

2000 Centers for Disease Control and Prevention (CDC) growth charts26 and not our sample, which had substantially
higher variance. The planned study will involve eight schools with 90 children at each school, and will have five 6-month
periods. For simplicity, we assume no dropout.

We consider the designs displayed in Figure 6. Each of these designs has seven cluster-periods in Intervention 1 only,
seven in Intervention 2 only, and ten in the combined condition. Design #1 is a concurrent design with the combined
condition as another “stack”. Design #2 is similar to a two-intervention concurrent design but has most clusters further
transition to the combined condition. Designs #3 and #4 combine elements of Designs #1 and #2; they are distinguished
by Design #4 having earlier introduction of the combined condition and featuring some clusters that never transition to
the combined condition. Designs #1, #3, and #4 are symmetric in Interventions 1 and 2 and thus have equal power for
these two effects. Design #2 is close to symmetric, but symmetry can be impossible to achieve with a small number of
clusters. Type I error was set to 0.05/3 = 0.0167 for three hypothesis tests.

The investigators considered the IAC of 𝜋 = 0.76 in the prior study to be relatively high and thought that it might be
lower in the planned study. To explore the impact of IAC on power, Figure 7A displays power for main effects for a range
of plausible values of 𝜋. As shown by others,27 power is an increasing function of 𝜋. Design #2 has the highest power
for main effects for all values of 𝜋. In this design, power for Intervention 1 is slightly higher than that for Intervention
2 due to its more balanced sequencing over time (2 clusters receiving intervention in periods 2, 3, and 4 rather than 1,
2, then 3 clusters). For all values of 𝜋, Design #1 has lowest power. Focusing on power for the interaction, displayed in
Figure 7B, Design #2 has by far the highest power; power for the three other designs is similar. Overall, power to detect
the interaction is low.

Design #2 is clearly superior for detecting both main and interaction effects. In Design #2, clusters transition between
conditions more than any other design. When there are more transitions, within-cluster comparisons are increased, and
thus power to detect effects is increased. In Design #1, cluster transition only once, and thus this design has the lowest
power for main effects. Beyond power, other drawbacks of the designs should be considered. For example, in Design #3,
time in the combined condition occurs almost entirely during the last period, risking confounding with time. This example
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1506 SUNDIN and CRESPI

F I G U R E 6 Variations of stepped wedge factorial design

F I G U R E 7 Comparison of power for detecting main and interaction effects

also illustrates that to power on the interaction term, designs should include two features: clusters that experience the
control, single intervention and combined conditions, and relatively early introduction of the combined condition.

3.4 Four-arm design

To study multiarm trials, we continue with SWDs for child obesity interventions using BMI z-score as the outcome vari-
able and the variance parameter estimates from the previous similar study described in Section 3.3. We study the designs
in Figure 6 but regard the combined condition as a third intervention (Intervention 3), and assume the goal is to com-
pare each of the three interventions to the control condition. Other hypotheses could include direct comparisons of
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SUNDIN and CRESPI 1507

F I G U R E 8 Comparison of power for each of three interventions for multiarm trials. Average power is calculated as the mean over all
interventions

interventions. We assume a simple effect size of 0.92 for each of the intervention arm, corresponding to a standardized
effect size of 0.4. Each cluster-period has N = 90 individuals. We use the same variance parameters as above, and allow
the individual auto-correlation 𝜋 to vary. Type I error is set to 0.05∕3 = 0.0167 for each of 3 tests. We compute power for
each intervention as well as average power.

Power to detect all three interventions individually and averaged is shown in Figure 8 as a function of 𝜋. This example
shows that unlike factorial designs, power in multiarm trials is less dependent on clusters transitioning to multiple inter-
vention conditions and more dependent on when interventions are first introduced in the study. For Interventions 1 and
2, Design #2 yields the highest power across all values of 𝜋, as it introduces the intervention early in the study across
multiple clusters. However, for Intervention 3, we see that Design #1 yields the highest power, as this design introduces
Intervention 3 earlier in the study than any other design. We also note that for Intervention 3, Design #3 yields the lowest
power, as only two cluster-periods are in this condition prior to the final time period, resulting in a significant amount of
confounding between time and an intervention effect.

Design #2 has higher power than Design #3 for all interventions. However, Design #2 only outperforms Designs #1
and #4 for Interventions 1 and 2 and has lower power for Intervention 3. This can be attributed to the fact that Design
#2 primarily features Intervention 3 in time periods 4 and 5. Looking at average power for all three interventions, Design
#1 has the highest average power, but for higher 𝜋, has about average equal power with Design #4. Design #2 has about
0.03 lower average power compared with Design #1 for all 𝜋 values shown, and Design #3 has about 0.07 lower average
power than Design #1.

3.5 Simulation study

We used simulation to verify the power calculations and Type I error rates for all examples in Section 3. We simulated
1000 data sets under the alternate hypothesis using representative values of the variance parameters that were allowed to
vary to verify power for each example. Linear mixed models were fit to each simulated data set using restricted maximum
likelihood as used in other stepped wedge simulation studies,27 using the lme4 package in R.28 No small sample size
corrections were made. Power was calculated as the percentage of simulations in which the null hypothesis was rejected
using a Wald test at the Bonferroni-corrected Type I error level. Type I error rates were estimated by simulating data
under the null hypothesis, that is, setting all treatment effects to 0, and calculating the percentage of simulations in which
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1508 SUNDIN and CRESPI

T A B L E 1 Comparison of power based on simulation and proposed method (in parentheses)

𝝅 = 0.05 𝝅 = 0.35

𝜌w = 0.05 𝜌w = 0.30 𝜌w = 0.05 𝜌w = 0.30

Design 𝛿1 = 0.4 𝛿1 = 0.4 𝛿1 = 0.4 𝛿1 = 0.4

Single intervention 0.61 (0.61) 0.71 (0.70) 0.78 (0.75) 0.86 (0.85)

12-cluster concurrent 0.73 (0.71) 0.80 (0.79) 0.83 (0.85) 0.93 (0.92)

10-cluster concurrent 0.60 (0.60) 0.68 (0.68) 0.77 (0.75) 0.88 (0.85)

Type I error (nominal error = 0.025)

Single intervention 0.026 0.027 0.020 0.023

12-cluster concurrent 0.022 0.019 0.039 0.026

10-cluster concurrent 0.027 0.024 0.024 0.032

Note: Single-intervention and concurrent designs in Section 3.1.

T A B L E 2 Comparison of power based on simulation and proposed method (in parentheses)

𝝅 = 0.05 𝝅 = 0.35

𝜌w = 0.05 𝜌w = 0.30 𝜌w = 0.05 𝜌w = 0.30

Design 𝛿1 = 0.4 𝛿1 = 0.4 𝛿1 = 0.4 𝛿1 = 0.4

12-cluster concurrent 0.73 (0.71) 0.80 (0.79) 0.83 (0.85) 0.93 (0.92)

12-cluster late design 0.66 (0.65) 0.76 (0.75) 0.79 (0.80) 0.89 (0.89)

10-cluster early design 0.71 (0.72) 0.83 (0.79) 0.88 (0.86) 0.94 (0.94)

Type I error (nominal error = 0.025)

12-cluster concurrent 0.019 0.018 0.036 0.022

12-cluster late design 0.018 0.024 0.028 0.016

10-cluster early design 0.026 0.026 0.023 0.020

Note: Concurrent designs and factorial design in Section 3.2.

the null hypothesis was falsely rejected using an experimentwise Type I error rate of 0.05 and Bonferroni corrections as
described in the examples.

Tables 1,2,3, and 4 compare power calculated using our method to power estimated by simulation for each set of
examples. For all examples, power calculated numerically using our method and simulated power were similar, with
no indication of systematic under- or over-estimation of power. Similarly, Type I error rates from the simulations were
reasonably close to the nominal level, and did not appear to be systematically over- or under-estimated.

4 DISCUSSION

Stepped wedge designs with more than one intervention are being used in practice despite a paucity of literature on their
statistical design and analysis. We have presented power calculation methods for stepped wedge design trials that have
multiple interventions, both as multiarm and factorial designs. We focus on studies that include a relatively small num-
ber of clusters, which is common for stepped wedge trials.29 In our examples, it was not feasible to explore all possible
design options. However, the examples demonstrate several principles. We found that a concurrent design, in which two
one-treatment stepped wedge trials are conducted as a single study, is more efficient than two separate one-treatment stud-
ies, which is supported by Lyons et al.6 Our methods enable power calculations for such studies. In concurrent designs,
cluster-periods in the control condition perform “double duty” by serving as controls for both treatment conditions. Such
trials are essentially three-arm trials in which two interventions are each compared to a control condition.
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SUNDIN and CRESPI 1509

T A B L E 3 Comparison of power based on simulation and proposed method (in parentheses)

𝝆w = 0.07, 𝝆a = 0.05, 𝝅 = 0.5 𝝆w = 0.07, 𝝆a = 0.05, 𝝅 = 0.7

Intvn 1 Intvn 2 Interaction Intvn 1 Intvn 2 Interaction

Design 𝛿1 = 0.44 𝛿1 = 0.44 𝛿3 = 0.22 𝛿1 = 0.44 𝛿2 = 0.44 𝛿3 = 0.22

1 0.83 (0.82) 0.85 (0.82) 0.15 (0.11) 0.85 (0.85) 0.89 (0.85) 0.15 (0.11)

2 0.94 (0.94) 0.91 (0.92) 0.28 (0.29) 0.95 (0.96) 0.94 (0.94) 0.31 (0.31)

3 0.88 (0.89) 0.89 (0.89) 0.13 (0.10) 0.91 (0.91) 0.92 (0.91) 0.14 (0.11)

4 0.87 (0.85) 0.86 (0.85) 0.15 (0.13) 0.90 (0.88) 0.89 (0.88) 0.16 (0.14)

Type I error (nominal = 0.0167)

1 0.016 0.019 0.014 0.014 0.018 0.013

2 0.011 0.013 0.015 0.009 0.014 0.014

3 0.016 0.021 0.017 0.015 0.021 0.011

4 0.011 0.017 0.011 0.012 0.016 0.008

Note: Factorial designs in Section 3.3.

T A B L E 4 Comparison of power based on simulation and proposed method (in parentheses)

𝝆w = 0.07, 𝝆a = 0.05, 𝝅 = 0.5 𝝆w = 0.07, 𝝆a = 0.05, 𝝅 = 0.7

Intvn 1 Intvn 2 Intvn 3 Intvn 1 Intvn 2 Intvn 3

Design 𝛿1 = 0.5 𝛿1 = 0.4 𝛿3 = 0.4 𝛿1 = 0.4 𝛿2 = 0.4 𝛿3 = 0.4

1 0.75 (0.74) 0.79 (0.74) 0.91 (0.91) 0.79 (0.77) 0.81 (0.77) 0.93 (0.93)

2 0.89 (0.88) 0.85 (0.85) 0.58 (0.56) 0.91 (0.91) 0.88 (0.88) 0.62 (0.60)

3 0.81 (0.81) 0.81 (0.81) 0.52 (0.53) 0.84 (0.85) 0.85 (0.85) 0.57 (0.57)

4 0.80 (0.76) 0.79 (0.76) 0.80 (0.81) 0.83 (0.80) 0.82 (0.80) 0.84 (0.84)

Type I error (nominal = 0.0167)

1 0.016 0.019 0.016 0.014 0.018 0.016

2 0.011 0.013 0.010 0.009 0.014 0.009

3 0.016 0.021 0.024 0.015 0.021 0.025

4 0.011 0.017 0.010 0.012 0.016 0.011

Note: Multiarm designs in Section 3.4.

Our results also illustrate that stepped wedge factorial designs that include cluster-periods in a combined condition
can increase power substantially compared to concurrent designs when treatment effects are additive. However, since
the presence of an interaction generally decreases power for detecting main effects in factorial designs,30 power may
end up being inadequate if a potential interaction was not taken into account in power calculations. One approach for
guarding against this eventuality is to conduct sensitivity analyses that assume some interaction between interventions
when designing the study. Our power calculation methods can be used for this purpose.

In some studies, detecting an interaction effect may be of interest. Our work shows that in a stepped wedge factorial
design where the aims include detecting an interaction effect, treatment sequencing is critical. We found that in general,
designs in which clusters transition from control to single treatment to a combined treatment will be more powerful than
designs in which clusters make only one transition, from control to a single treatment or control to combined condition.
Such multiple-transition designs allow for more within-cluster comparisons, which are a driving factor in power for
stepped wedge trials in general.31

A common method of handling interactions in factorial designs is to test for an interaction and drop it if it is not
significant. This approach has been shown to lead to biased results.32 We follow Kahan in recommending reporting results
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1510 SUNDIN and CRESPI

both as a factorial design and as a multiarm analysis, where a condition with multiple treatments is considered as a
separate treatment condition altogether.

Our examples included both repeated cross-sectional and cohort designs. Power for repeated cross-sectional ver-
sus cohort designs has been addressed by others;15 in general, cohort designs have higher power than cross-sectional
designs.27,33 However, there is often a lack of information about parameter values to support power analysis for cohort
designs. ICCs are typically reported as the within-time, within-cluster correlation, 𝜌w; the across-time, within-cluster cor-
relation 𝜌a, and individual auto-correlation 𝜋 are often not reported. Given this lack of information, it may be sensible to
make the simplifying assumption that 𝜌w = 𝜌a, which corresponds to the repeated cross-sectional design.

When conducting multiple hypothesis tests in stepped wedge trials with multiple interventions, investigators should
consider the need to control the experimentwise Type I error rate. We note that when multiple treatment groups are each
compared to a common control group, Dunnett’s method may be used for experimentwise Type I error rate control.34

For other multiarm or factorial designs, there are several possible methods to control for familywise error rate.35 In our
examples, we used a Bonferroni correction. As the number of hypotheses increases, the familywise error rate may be
better addressed using other techniques.

In this article, we focus on SWDs with 2 or 3 treatment conditions. However, our results are generalizable to designs
with more interventions. Consider a model with M main effects and B two-way interaction terms, where M ≥ 2 and
0 ≤ B ≤

M(M−1)
2

. The variance-covariance matrix of the regression coefficients would be a (M + B) × (M + B) matrix.
The elements of this matrix would have the same form as the elements of the 3 × 3 matrix in Appendix S1 for diago-
nal and off-diagonal elements for both main and interaction effects. Solving for [(M + B) × (M + B)]−1 would yield the
variance-covariance matrix for the estimated coefficients. Note that this approach holds for two-way interactions only;
higher-order interactions are not considered.

There are several limitations to our work. We use standardized effect sizes. Standardized effect sizes may be misleading
if underlying distributions are skewed.36 A more extensive discussion of advantages and disadvantages of simple versus
standardized effect sizes is found elsewhere.37 We consider continuous outcomes only; further development is needed for
noncontinuous outcomes, including binary, survival, categorical and count outcomes. In the model we present, the clus-
ter autocorrelation is constrained to be the same for cluster means across time periods, regardless of the length of time
between observing cluster level outcomes. This may not be an accurate assumption, as cluster means observed closer in
time may be more correlated than those that are farther apart.38 There are models for one treatment SWDs that allow the
correlation between cluster means to decay over time.21,39,40 For linear mixed models with a decaying correlation struc-
ture, the covariance matrix is a Toeplitz matrix and requires the use of the Trench algorithm to numerically invert.39

We did not include this feature in our work here as we focused on the derivation of closed form variances and covari-
ances of treatment and interaction effects. We only consider complete SWDs. Incomplete designs, in which data are not
collected from some clusters in some periods, have been addressed for stepped wedge trials with a single treatment.41,42

Another topic that could be explored further would be determining the minimum number of clusters, individuals per
clusters, or design sequences that yield a certain level of power, which has been explored for stepped wedge designs with
a single intervention,43 but is out of the scope of our current work here. Finally, we have assumed that treatment effects
are instantaneous and do not consider delays in treatment effects, which have been considered for SWDs with a single
treatment.1,40,44 Future work could explore how delays in one or both treatment effects may impact power of main and
interaction effects.
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