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Summary. We consider design issues for cluster randomized trials (CRTs) with a binary outcome where both unit costs
and intraclass correlation coefficients (ICCs) in the two arms may be unequal. We first propose a design that maximizes cost
efficiency (CE), defined as the ratio of the precision of the efficacy measure to the study cost. Because such designs can be
highly sensitive to the unknown ICCs and the anticipated success rates in the two arms, a local strategy based on a single
set of best guesses for the ICCs and success rates can be risky. To mitigate this issue, we propose a maximin optimal design
that permits ranges of values to be specified for the success rate and the ICC in each arm. We derive maximin optimal
designs for three common measures of the efficacy of the intervention, risk difference, relative risk and odds ratio, and study
their properties. Using a real cancer control and prevention trial example, we ascertain the efficiency of the widely used
balanced design relative to the maximin optimal design and show that the former can be quite inefficient and less robust to
mis-specifications of the ICCs and the success rates in the two arms.

Key words: Balanced design; Binary outcome; Intraclass correlation coefficient; Relative cost efficiency; Robust design;
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1. Introduction
Cluster randomized trials (CRTs) are increasingly used in
many fields including public health, education, and clinical
research (Donner and Klar, 2000; Hayes and Moulton, 2009).
CRTs are experiments in which clusters of individuals rather
than independent individuals are randomly allocated to inter-
vention groups. All individuals in a given cluster receive the
same treatment. Clusters can be churches, villages, medical
practices, families, or schools. A key feature of CRTs is that
outcomes of individuals within a cluster are correlated. The
intraclass correlation coefficient (ICC), usually denoted by
ρ, provides a quantitative measure of within-cluster correla-
tion. The ICC is variously defined as the Pearson correlation
between two members in the same cluster or the proportion of
the total variance in the outcome attributable to the variance
between clusters. Since the correlation increases the sampling
error of estimating the intervention effect (Donner, Birkett,
and Buck, 1981), CRTs are less efficient than individual ran-
domized trials (IRTs). However, there are many reasons to use
CRTs, including administrative convenience, ethical consider-
ations, to avoid treatment group contamination and because
the intervention is naturally applied at the cluster level.

All else being equal, investigators prefer to expend minimal
resources to obtain the most accurate estimate of an interven-
tion effect. This is even more pertinent when designing CRTs
because CRTs can be much less efficient than IRTs (see, e.g.,
Donner and Klar, 2000). However, because of the correlated
data structure, design issues for CRTs are more complicated
than for IRTs (Moerbeek and Teerenstra, 2016). In practice,
investigators usually use a two-arm CRT and assign the same
number of clusters to each arm (Hayes and Moulton, 2009).
Following classic analysis of variance terminology (for e.g.,

Milliken and Johnson, 1984), we call such a design a bal-
anced design. Previous research on IRTs has shown that a
balanced design may not be the most efficient, particularly
when costs are unequal in the two arms; discussions can be
found in Yanagawa and Bolt (1977), Meydrich (1978), Lubin
(1980), Brittain and Schlesselman (1982), Morgenstern and
Winn (1983), and Gail et al. (1996). Several authors, including
Raudenbush (1997), Moerbeek, Breukelen and Berger (2000),
Raudenbush and Liu (2000), Breukelen and Candel (2012),
and Moerbeek and Teerenstra (2016), have discussed optimal
design issues for CRTs that included cost considerations in
their optimality criterion. However, they have focused mainly
on finding optimal sample size per cluster rather than opti-
mal allocation of clusters to the two or more conditions. Their
designs assume an equal number of clusters in the two arms.
In addition, they assume the outcomes are continuous and the
ICCs are the same in the two arms.

The expected success rates in the different conditions are
important parameters for any IRT or CRT design. Dette
(2004) noted that almost all optimal designs for IRTs are
locally optimal in that they depend on the unknown suc-
cess rates. Consequently, such designs may not be robust
when success rates are mis-specified. He proposed a maximin
method to construct designs that are robust with respect to
the unknown parameters. His idea was to find a maximin
optimal design that maximizes the minimum efficiency over a
plausible region of nominal possible values of the parameters.
He provided some theoretical justifications but had no real
application.

Our aim in this article is to develop a flexible maximin
approach for designing a two-arm CRT with binary out-
comes. We assume the total number of clusters is fixed in
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advance and the objective is to determine the optimal pro-
portion of clusters to assign to each arm, considering costs.
Often, CRTs involve a fixed predetermined number of clus-
ters, due to constraints on recruitment rate or the number
of available clusters, or financial constraints. Such a maximin
optimal design offers some global protection against the worst
case scenario when the nominal values of the parameters for
the design problem are very incorrect. We allow both costs
and ICCs to vary between the two arms, and we develop the
approach for the three most common treatment effect mea-
sures for binary outcomes, risk difference (RD), relative risk
(RR), and odds ratio (OR). Cluster sizes are assumed equal.
Using a cancer control and prevention trial, we illustrate that
the balanced design that assigns an equal number of clusters
to each arm can have low statistical and cost efficiencies.

The organization of this article is as follows: In Section 2,
we introduce the common correlation model and define cost
efficiency (CE). We derive the optimal allocations for esti-
mating RD, RR, and OR by maximizing CE. We then define
relative cost efficiency (RCE) and show that the RCEs of
balanced designs compared to the optimal allocation can be
low in many situations. Since the optimal allocation can be
highly sensitive to the unknown ICCs and the anticipated
success rates, a locally optimal design based on single best
guesses for the ICCs and success rates can be risky. In Sec-
tion 3, we propose a maximin optimal design that permits
a range of values to be specified for the success rate and
the ICC in each arm. In Section 4, we provide guidance on
applying the methods and illustrate using a real CRT, and
show that the maximin optimal design is generally more effi-
cient (i.e., has a larger RCE) than the balanced design and
is robust to mis-specifications of the ICCs and the success
rates in the two arms. Section 5 provides a discussion. In the
Web Appendix, we provide a proof of our main result for the
maximin approach, sensitivity analyzes, and R code to imple-
ment the proposed maximin optimal designs for user-specified
settings.

2. Optimal Allocation

Our two-arm CRTs with binary outcomes are based on
the common correlation model; see, for example, Ridout,
Demetrio, and Firth (1999) and Eldridge, Ukoumunne, and
Carlin (2009). Let Xhij denote the response of the jth indi-
vidual in the ith cluster in the hth treatment arm. Let
Xhij = 1 when the outcome of interest is present (success) and
Xhij = 0 otherwise (failure). We assume that the success rate
Pr(Xhij = 1) for all individuals in all clusters in the hth treat-
ment arm is the same and equal to πh, h ∈ {1, 2} and all cluster
sizes are equal to m. The responses of individuals from differ-
ent clusters are assumed to be independent, and within each
cluster, the correlation of responses between any pair of indi-
viduals is ρhi, the ICC. We further assume that (i) the ICCs
for all clusters in the hth treatment arm are the same, so
the subscript i in ρhi can be removed, (ii) the total number
of clusters in the trial is predetermined and equal to k; k1,
k2 are the numbers of clusters in arms 1 and 2, respectively,
such that k = k1 + k2, and (iii) ρ1 is not necessarily equal to
ρ2. The last assumption is more flexible and also more realis-
tic in some intervention trials; see for example, Crespi, Wong,

and Mishra (2009), Crespi, Wong, and Wu (2011), and Wu,
Crespi, and Wong (2012).

We consider three commonly used treatment effect mea-
sures, RD = π1 − π2, RR = π1/π2, and OR = π1/(1−π1)

π2/(1−π2)
. For a

given measure, our goal is to determine the optimal propor-
tion of clusters to allocate to arm 1, w = k1/k, in order to
minimize the asymptotic variance of the relevant estimator,
R̂D = π̂1 − π̂2, R̂R = π̂1/π̂2, or ÔR = π̂1/(1−π̂1)

π̂2/(1−π̂2)
. The allocation

scheme that minimizes this variance is called the optimal allo-
cation. The variances can be derived as follows. By the central
limit theorem, the maximum-likelihood estimates of (π̂1, π̂2)
for the success rates are approximately normal with

√
k

(
π̂1 − π1

π̂2 − π2

)
D→ N

⎧⎪⎨
⎪⎩

(
0

0

)
,

⎛
⎜⎝

π1(1 − π1)d1

wm
0

0
π2(1 − π2)d2

(1 − w)m

⎞
⎟⎠

⎫⎪⎬
⎪⎭,

where dh = 1 + (m − 1)ρh is the design effect for arm h ∈
{1, 2}. The asymptotic variance of R̂D is

�−1
RD = π1(1 − π1)

d1

m

[
1

w
+ π2(1 − π2)d2

π1(1 − π1)d1(1 − w)

]
,

and applying the delta method, we obtain asymptotic variance
estimates for R̂R and ÔR as:

�−1
RR ≈ π1(1 − π1)

π2
2

d1

m

[
1

w
+ π1(1 − π2)d2

π2(1 − π1)d1(1 − w)

]

and

�−1
OR ≈ π1(1 − π2)

2

(1 − π1)3π
2
2

d1

m

[
1

w
+ π1(1 − π1)d2

π2(1 − π2)d1(1 − w)

]
.

Next, we consider study costs. In CRTs, there can be costs
per individual and costs per cluster, and these could vary by
arm. Let the cost per individual be ch and the cost per cluster
be eh in arm h. The total cost function when each cluster has
size m is

k1(mc1 + e1) + k2(mc2 + e2)

= k[w(mc1 + e1) + (1 − w)(mc2 + e2)].

Following Dette (2004), we define cost efficiency (CE) as
the ratio of the precision of the treatment effect measure to
the total study cost. This is a natural way to combine sta-
tistical and cost considerations. For each outcome measure
x ∈ {RD, RR, OR}, the goal then is to determine the optimal
proportion of clusters to assign to arm 1, denoted w∗

x, by
maximizing the CE for measure x, given by

CEx = �x

k1(mc1 + e1) + k2(mc2 + e2)
.

To find this design, CEx is optimized with respect to w

by setting its first derivative equal to zero and solving for w.
Defining the ratio of total per-cluster costs in the two arms
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Table 1
RCE of a balanced design (w = 0.5) compared to the optimal design for estimating RD with fixed number of clusters under

different combinations of π1 and π2 when ρ1 = 0.05, ρ2 = 0.1, m = 20, and γ = 5(2)

π1/π2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.80 0.68 0.63 0.60 0.59 0.60 0.63 0.68 0.80
(.93) (.85) (.80) (.78) (.77) (.78) (.80) (.85) (.93)

0.2 0.90 0.80 0.75 0.72 0.71 0.72 0.75 0.80 0.90
(.98) (.93) (.89) (.87) (.87) (.87) (.89) (.93) (.98)

0.3 0.94 0.85 0.80 0.77 0.77 0.77 0.80 0.85 0.94
(1.00) (.96) (.93) (.91) (.91) (.91) (.93) (.96) (1.00)

0.4 0.95 0.87 0.83 0.80 0.79 0.80 0.83 0.87 0.95
(1.00) (.97) (.95) (.93) (.92) (.93) (.95) (.97) (1.00)

0.5 0.96 0.88 0.83 0.81 0.80 0.81 0.83 0.88 0.96
(1.00) (.98) (.95) (.94) (.93) (.94) (.95) (.98) (1.00)

0.6 0.95 0.87 0.83 0.80 0.79 0.80 0.83 0.87 0.95
(1.00) (.97) (.95) (.93) (.92) (.93) (.95) (.97) (1.00)

0.7 0.94 0.85 0.80 0.77 0.77 0.77 0.80 0.85 0.94
(1.00) (.96) (.93) (.91) (.91) (.91) (.93) (.96) (1.00)

0.8 0.90 0.80 0.75 0.72 0.71 0.72 0.75 0.80 0.90
(.98) (.93) (.89) (.87) (.87) (.87) (.89) (.93) (.98)

0.9 0.80 0.68 0.63 0.60 0.59 0.60 0.63 0.68 0.80
(.93) (.85) (.80) (.78) (.77) (.78) (.80) (.85) (.93)

as γ = mc1+e1
mc2+e2

, it follows directly that the optimal allocation
w∗

x that maximizes CE for each measure is

w∗
RD =

√
π1(1 − π1)d1√

π1(1 − π1)d1 +
√

γπ2(1 − π2)d2

,

w∗
RR =

√
π2(1 − π1)d1√

π2(1 − π1)d1 +
√

γπ1(1 − π2)d2

,

and

w∗
OR =

√
π2(1 − π2)d1√

π2(1 − π2)d1 +
√

γπ1(1 − π1)d2

.

We note that if ρ1 = ρ2, we have d1 = d2 and the optimal
allocations for all three measures reduce to those reported in
Dette (2004) for IRTs.

For a vector of fixed design parameters θT = (π1, π2, ρ1, ρ2),
the design with a larger CE is more desirable, all else being
equal. To compare different designs, we use relative cost effi-
ciency (RCE), defined as the cost efficiency of a design with
allocation w relative to the cost efficiency of the optimal
design, that is, RCEx(w) = CEx(w)

CEx(w
∗
x).

The maximal value of RCE

is 1, which is reached when w is the optimal allocation w∗
x.

For a balanced design, w = 0.5. If RCEx(0.5) is close to 1, the
balanced design performs about as well as the optimal design.

For different measures x, RCE of a balanced design com-
pared to the optimal design can be quite different. Tables 1,
2, and 3 show RCEx(0.5) for estimating RD, RR, and OR,
respectively, for different combinations of π1 and π2 when
the total number of clusters in the trial is fixed. The value
of the cost ratio, γ = 5, is motivated by one of our can-
cer control and prevention trials described more fully later.

For illustration purposes, we also consider γ = 2 to ascertain
whether RCEx(0.5) is sensitive to the cost ratio value. We
focus here on the performance of the balanced design because
it is widely used in practice. For space consideration, we only
show the case when ρ1 = 0.05, ρ2 = 0.1, and m = 20, but inter-
ested readers can compute the RCE for any design of interest
using the R code in Web Appendix A.4.

Table 1 shows RCEx(0.5) values when the treatment effect
measure is RD. The RCEs are symmetrical about π1 = 0.5
and about π2 = 0.5 because πh(1 − πh), which is symmetrical
about 0.5, appears in the formula. The RCEs range between
0.59 and 0.96 for γ = 5 and between 0.77 and 1.00 for γ = 2.
In most scenarios, RCEx(0.5) is larger than 0.7 for γ = 5 and
larger than 0.8 for γ = 2. The smallest value occurs when
π1 = 0.1 or 0.9, π2 = 0.5 and γ = 5. Hence the balanced design
performs satisfactorily in some cases but can be inefficient
when costs or success rates are very different between arms.

Table 2 shows RCEx(0.5) values when the treatment effect
measure is RR. Here, the RCEs are symmetrical about the
diagonal line π1 = 1 − π2, which is also a direct consequence
of the formula. The RCEs range between 0.24 and 1.00 for
γ = 5 and between 0.42 and 1.00 for γ = 2. RCE values are
smaller than 0.8 in many scenarios. This suggests that a
balanced design often will not perform well for estimating
RR. The smallest RCE of 0.24 occurs when π1 = 0.9 and
π2 = 0.1. Although this magnitude of difference in success
rates is unlikely to occur in practice, it shows that in extreme
cases when the intervention arm is much more successful com-
pared with the control arm, the balanced design can perform
substantially worse for estimating RR than for estimating RD.
This reinforces the recommendation that the design should be
chosen appropriately for the outcome measure.

Table 3 shows RCEx(0.5) values for estimating the OR.
Similar to RD, the RCEs are symmetrical about π1 = 0.5 and
about π2 = 0.5. However, the peaks and trends are different
because w∗

RD contains π1(1 − π1) in the numerator whereas
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Maximin Optimal Designs for CRTs 919

Table 2
RCE of a balanced design (w = 0.5) compared to the optimal design for estimating RR with fixed number of clusters under

different combinations of π1 and π2 when ρ1 = 0.05, ρ2 = 0.1, m = 20, and γ = 5(2)

π1/π2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.80 0.93 0.98 1.00 1.00 0.99 0.97 0.95 0.92
(.93) (1.00) (1.00) (.98) (.95) (.92) (.88) (.84) (.79)

0.2 0.63 0.80 0.90 0.95 0.98 1.00 1.00 0.98 0.95
(.81) (.93) (.98) (1.00) (1.00) (.98) (.94) (.90) (.84)

0.3 0.53 0.69 0.80 0.88 0.94 0.98 1.00 1.00 0.97
(.72) (.85) (.93) (.98) (1.00) (1.00) (.98) (.94) (.88)

0.4 0.46 0.60 0.71 0.80 0.87 0.93 0.98 1.00 0.99
(.65) (.78) (.87) (.93) (.97) (1.00) (1.00) (.98) (.92)

0.5 0.40 0.52 0.63 0.72 0.80 0.87 0.94 0.98 1.00
(.60) (.71) (.80) (.87) (.93) (.97) (1.00) (1.00) (.95)

0.6 0.36 0.46 0.55 0.63 0.72 0.80 0.88 0.95 1.00
(.55) (.65) (.73) (.81) (.87) (.93) (.98) (1.00) (.98)

0.7 0.32 0.40 0.47 0.55 0.63 0.71 0.80 0.90 0.98
(.51) (.59) (.66) (.73) (.80) (.87) (.93) (.98) (1.00)

0.8 0.28 0.34 0.40 0.46 0.52 0.60 0.69 0.80 0.93
(.47) (.53) (.59) (.65) (.71) (.78) (.85) (.93) (1.00)

0.9 0.24 0.28 0.32 0.36 0.40 0.46 0.53 0.63 0.80
(.42) (.47) (.51) (.55) (.60) (.65) (.72) (.81) (.93)

w∗
OR contains π2(1 − π2) in the numerator. The range of RCE

values for γ = 5 is between 0.59 and 0.96, and the range for
γ = 2 is between 0.77 and 1.00. For estimating OR, the lowest
value of RCEx(0.5), 0.59, occurs when γ = 5, π1 = 0.5, and
π2 = 0.1 or 0.9.

Tables 1–3 show that the efficiencies of a balanced design
can vary substantially depending on whether the treatment
effect measure is RD, RR, or OR, the value of the cost ratio
γ, and obviously also on the values of θT = (π1, π2, ρ1, ρ2).
Because θ and the cost ratio γ can vary in many different
ways, it can be difficult to discern general trends and patterns
as one or more of these parameters vary unless we vary only

one of the parameters and fix the rest. For example, consider
the effect on the optimal allocation w∗

x when all parameters
are fixed except the value of only one parameter in the follow-
ing order: γ, ρ1, ρ2, π1, and π2. From the tables and formula
for w∗

x, we observe that if all other parameters are fixed, then
w∗

x is (i) a decreasing function of γ, (ii) an increasing function
of ρ1, (iii) a decreasing function of ρ2. Further, for the treat-
ment effect measure RR, w∗

x is a decreasing function of π1, for
RD, it is an increasing function of π1 until 0.5 after which it
decreases, and for OR, it is a decreasing function of π1 until
0.5 after which it increases. As a function of π2, we observe
an opposite trend for RD, RR, and OR. The R code available

Table 3
RCE of a balanced design (w = 0.5) compared to the optimal design for estimating OR with fixed number of clusters under

different combinations of π1 and π2 when ρ1 = 0.05, ρ2 = 0.1, m = 20, and γ = 5(2)

π1/π2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.80 0.90 0.94 0.95 0.96 0.95 0.94 0.90 0.80
(.93) (.98) (1.00) (1.00) (1.00) (1.00) (1.00) (.98) (.93)

0.2 0.68 0.80 0.85 0.87 0.88 0.87 0.85 0.80 0.68
(.85) (.93) (.96) (.97) (.98) (.97) (.96) (.93) (.85)

0.3 0.63 0.75 0.80 0.83 0.83 0.83 0.80 0.75 0.63
(.80) (.89) (.93) (.95) (.95) (.95) (.93) (.89) (.80)

0.4 0.60 0.72 0.77 0.80 0.81 0.80 0.77 0.72 0.60
(.78) (.87) (.91) (.93) (.94) (.93) (.91) (.87) (.78)

0.5 0.59 0.71 0.77 0.79 0.80 0.79 0.77 0.71 0.59
(.77) (.87) (.91) (.92) (.93) (.92) (.91) (.87) (.77)

0.6 0.60 0.72 0.77 0.80 0.81 0.80 0.77 0.72 0.60
(.78) (.87) (.91) (.93) (.94) (.93) (.91) (.87) (.78)

0.7 0.63 0.75 0.80 0.83 0.83 0.83 0.80 0.75 0.63
(.80) (.89) (.93) (.95) (.95) (.95) (.93) (.89) (.80)

0.8 0.68 0.80 0.85 0.87 0.88 0.87 0.85 0.80 0.68
(.85) (.93) (.96) (.97) (.98) (.97) (.96) (.93) (.85)

0.9 0.80 0.90 0.94 0.95 0.96 0.95 0.94 0.90 0.80
(.93) (.98) (1.00) (1.00) (1.00) (1.00) (1.00) (.98) (.93)
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920 Biometrics, September 2017

in Web Appendix A.4 allows the user to generate the RCEs
and w∗

x based on the optimal allocation for any different sets
of values for the parameters.

3. Maximin Optimal Design

In Section 2, we derived the optimal allocation w∗
x for a par-

ticular measure x ∈ {RD, RR, OR} when θ is assumed known.
Clearly, the optimal allocation w∗

x depends on the vector of
parameters θT = (π1, π2, ρ1, ρ2), the cluster size m and the
cost ratio γ, and so they are termed locally optimal designs
(Chernoff, 1953). In practice, the cluster size and cost ratio
are likely known before the study, but the values of π1, π2, ρ1,
and ρ2 are not. Consequently, nominal values for those param-
eters are needed before the optimal design can be determined.
But if the parameters are mis-specified and take different val-
ues in the actual trial, then the selected design can end up
being far from optimal.

A maximin optimal design can guard against this risk. In
general, a maximin optimal design is a design that maximizes
some measure of performance in the worst case scenario when
larger values of the measure are more desirable, see for exam-
ple, Dette and Biedermann (2003) or Biedermann, Dette, and
Pepelyshev (2004). In our context, we chose to maximize the
RCE in the worst case scenario. Conceptually, the maximin
optimal design can be found as follows: (i) Specify plausi-
ble ranges of values for unknown parameters; (ii) For each
design (for each fixed w in our case), find the worst configu-
ration within the set of possible parameter values, that is, the
one that gives the smallest RCE; then (iii) Select the design
(value of w) that maximizes the smallest RCE. This design is
the maximin optimal design.

To find the maximin optimal design for a two-arm CRT
with binary outcomes with cost consideration, we proceed
as follows. First, specify a plausible region � containing all
plausible values of θ. We seek the allocation scheme that max-
imizes the minimum RCE that can arise so long as θ is in the
user-specified region �. More formally, our design criterion
is to find maximin optimal proportion of clusters to assign
to arm 1, wm∗

x ∈ (0, 1), such that min(RCEx(θ, w, m, γ)|θ ∈ �)
is maximized. To this end, recall that dh = 1 + (m − 1)ρh,
h ∈ {1, 2} and let

yx(θ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

π2(1 − π2)

π1(1 − π1)

d2

d1

if x = RD

π1(1 − π2)

π2(1 − π1)

d2

d1

if x = RR

π1(1 − π1)

π2(1 − π2)

d2

d1

if x = OR.

The quantity yx(θ) does not have a meaningful interpretation
but it allows us to write the above expressions for the three
measures w∗

RD, w∗
RR, and w∗

OR more succinctly as

w∗
x = 1

1 +
√

γyx(θ)
,

where, as before, x ∈ {RD, RR, OR}. It also provides a means
of translating the four ranges for the four parameters into

a single overall range. For the given �, let yx = min(yx(θ))
and let yx = max(yx(θ)), where the optimization is over the
plausible region �. These are important quantities needed
to obtain the maximin allocation rule. For example, if the
treatment measure is OR, m = 20, 0.3 ≤ π1 ≤ 0.5, 0.2 ≤ π2 ≤
0.3, 0.1 ≤ ρ1 ≤ 0.2 and 0.1 ≤ ρ2 ≤ 0.2, we have y

OR
= 0.604

and y
OR

= 2.586. We show in Web Appendix A.1 that the
maximin optimal proportion of clusters to assign to arm 1 in
a two-arm CRT is

wm∗
x = (

√
γ + √

yx)
2 − (

√
γ + √

yx)
2

(
√

γ + √
yx)2(yx − 1) − (

√
γ + √

yx)2(yx − 1)
. (1)

For the same illustrative example, a direct calculation shows
wm∗

OR = 0.386 if γ = 2 and wm∗
OR = 0.473 if γ = 1. The practical

implication is that if cost in arm 1 is twice as expensive as
that for arm 2, the optimal maximin strategy for the given
plausible region is to allocate about 10% fewer subjects to the
more expensive arm.

It is interesting to note that the optimal allocation rule has
the same form for all three measures, RD, RR, and OR, but
the optimal proportion of clusters to assign to arm 1 varies
because the value of wm∗

x depends on yx and yx which depend
on the measure of interest. When ρ1 = ρ2, the formula for wm∗

x

simplifies and becomes the optimal allocation to arm 1 in an
IRT.

Now that we have moved from specifying single values of
parameters to specifying ranges of parameters, it is natural to
ask how the optimal design depends on the specified range.
Table 4 provides examples of how different ranges of ρ1 and ρ2

affect the maximin optimal allocation wm∗
x for the three mea-

sures when π1 and π2 are fixed. For all measures, the value
of wm∗

x increases as ρ1 increases and as ρ2 decreases. This is
the similar to the result in Section 2 in which the value of w∗

x

increases as ρ1 increases and ρ2 decreases. The maximal opti-
mal design allows specifying the ranges of ρ1 and ρ2 instead
of single values of ρ1 and ρ2, but the maximal optimal allo-
cation wm∗

x depends on the locations of those ranges. Limited
by space, we do not show examples of how different ranges
of π1 and π2 affect the maximin optimal allocation wm∗

x . Web
Appendix A.4 contains R code for calculating wm∗

x for a user-
specified parameter set �. Interested readers can use the code
to further explore the effects of ranges of parameters on the
maximin optimal design.

The locally optimal design in Section 2 is for a particular
point in the set �. The maximin optimal design is unique
and a globally optimal design, which considers the worst case
scenario that can arise within the set of plausible values of
θ ∈ �. It can be shown that wm∗

x is a locally optimal design
for a point in the set �, and the RCE of the maximin optimal
design is 1 when that particular point is the true value of θ.
This is a common feature of maximin optimal designs in gen-
eral, see for example, the discussion in Dette and Biedermann
(2003).

4. Guidance for Constructing a Maximin
Optimal Design for CRTs and Example

We now provide a step by step approach to find a maximin
optimal design for a two-arm CRT with a binary outcome
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Maximin Optimal Designs for CRTs 921

Table 4
Maximin optimal allocation wm∗

x for outcome measure x and
different ranges of ρ1 and ρ2 when π1 ∈ [0.3, 0.5],

π2 ∈ [0.2, 0.3], γ = 5, and m = 20

ρ1/ρ2 [0, 0.1] [0.1, 0.2] [0.2, 0.3]

x = RD
[0, 0.1] 0.315 0.247 0.212

[0.1, 0.2] 0.408 0.327 0.285
[0.2, 0.3] 0.461 0.375 0.330

x = RR
[0, 0.1] 0.226 0.175 0.150

[0.1, 0.2] 0.297 0.233 0.201
[0.2, 0.3] 0.341 0.271 0.235

x = OR
[0, 0.1] 0.273 0.210 0.179

[0.1, 0.2] 0.358 0.281 0.243
[0.2, 0.3] 0.408 0.326 0.283

when the total number of clusters is fixed in advance.

Step 1. Estimate the cluster size m and the cost ratio γ of
the total cost per cluster in arm 1 compared to arm
2. In our maximin optimal design method, these
are assumed known. Like many design methods for
CRTs, our method assumes cluster size is constant.
If there is some uncertainty about the value of m or
γ, a sensitivity analysis can be conducted, varying
these values.

Step 2. Select a treatment effect measure. As mentioned
previously, the maximin optimal design can be dif-
ferent for the different measures of treatment effect
for binary outcomes, the RD, the RR and the OR.
For the design, investigators should use the treat-
ment effect measure that they plan to estimate, as
specified in the study protocol. For example, if the
protocol calls for using a mixed logistic regression
model, investigators should select the OR as their
measure for the design work.

Step 3. Specify ranges of possible values for the parame-
ters (π1, π2, ρ1, ρ2). Investigators need to specify
minimum and maximum values for plausible suc-
cess rates and ICCs in each condition. Previous
studies, pilot data, and expert opinion can help
to specify these ranges. There is a large literature
on elicitation of prior distributions for parameters
in Bayesian analyzes; see, for example, Garthwaite,
Kadane, and O’Hagan (2005). The task here is eas-
ier than soliciting a prior distribution, since we
need only a range for each parameter, not a full
joint probability distribution. However, some ideas
for specifying parameter locations and intervals can
be applied. One may ask the question “What is the
range of values within which the response rate will
have a 95% chance to occur?” to solicit a 95% cred-
ible interval for a parameter. The range for each of
the two ICCs may be harder to elicit, since the
ICC is a less intuitive parameter than the success

rate, but there are an increasing number of liter-
ature reviews summarizing ICC values for various
types of studies (for e.g., Hade et al., 2010; Crespi,
Maxwell, and Wu, 2011), and these can help pro-
vide information for specifying a plausible range for
each of the ICCs.

Step 4. Compute the maximin optimal allocation wm∗
x and

assign this proportion of clusters to arm 1 and the
remainder to arm 2. More precisely, for a fixed total
number of clusters k, the optimal number of clus-
ters to assign to arm 1 is kwm∗

x , rounded to the
nearest integer.

We now apply the maximin approach to redesign a CRT
for the Samoan Women’s Health Study (Mishra et al., 2007)
to illustrate these steps. This study used a cluster random-
ized design for an intervention trial whose objective was
to increase mammography usage among Samoan American
women. A total of 61 Samoan-language churches in two coun-
ties in southern California agreed to participate in the study,
providing our fixed total k. Churches served as clusters and
were randomly assigned to either participate in a culturally
tailored breast cancer education program or a control con-
dition. The intervention included specially developed English
and Samoan language breast cancer educational booklets, skill
building and behavioral exercises, and interactive group dis-
cussion sessions. In the control arm, women were provided
with standard breast cancer educational materials. The mean
cluster size was 14 and we use this value as the constant clus-
ter size. The binary outcome was self-reported mammogram
use at follow-up. Because the intervention condition required
substantially more resources than the control condition, our
estimation was that a cost ratio of γ = 5 was justified.

Next, we consider specifying the range of possible values for
each of the parameters π1, π2, ρ1, and ρ2. An earlier study
reported prevalences of mammography use of 0.224 and 0.244
among Samoan women in Hawaii and Los Angeles, respec-
tively (Mishra, Luce, and Hubbell, 2001). Treating this as an
estimate for the proportion of mammography use by Samoan
women in the control condition, we specify the range of val-
ues for π2 as [0.2, 0.3]. To estimate a possible range of values
for the proportion of responders in the intervention arm, one
may proceed as follows. First, we believe the intervention will
increase mammography use and so the smallest value of π1

should be larger than the largest anticipated value of π2. Sec-
ond, we have less certainty about the intervention effect, so we
specify a wider range of possible values for π1. Accordingly,
we set the range of π1 to be [0.3, 0.6]. The next task is to spec-
ify reasonable ranges for the ICCs. This is always problematic
when no similar prior studies are available, which is the case
here. We combed the literature and found that Hade et al.
(2010) had reported ICCs for cancer screening CRTs ranged
from 0.05 to 0.3. However, not all of the clusters were churches
and not all of the trials involved mammography use. Never-
theless, given the limited information available, we worked
with these ranges of values for both ρ1 and ρ2. For illustra-
tion purposes, we also consider the case when the cost ratio
is γ = 2 to ascertain whether the maximin optimal design is
sensitive to the cost ratio value.
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Table 5
Maximin optimal designs for the Samoan Women’s Health

Study with 61 clusters and 14 subjects per cluster

RD RR OR

γ = 2
wm∗

x 0.430 0.316 0.382
k1 26 19 23
k2 35 42 38

γ = 5
wm∗

x 0.315 0.210 0.272
k1 19 13 17
k2 42 48 44

Results, obtained using formula (1), are summarized in
Table 5. The numbers of clusters have been rounded to the
nearest integer. Recalling that the cost ratio γ is the total
cost in arm 1 relative to arm 2, we observe that in general,
fewer clusters are allocated to the more costly arm 1. We also
see that the maximin optimal design is indeed sensitive to the
cost ratio value; for example, for RD, the number of clusters
allocated to arm 1 decreases from 26 to 19 as γ is changed
from 2 to 5.

Let us compare the RCE of our maximin optimal design
to the RCE of the balanced design for each measure. We first
consider RD. Figure 1a shows RCEs of the maximin opti-
mal design and the balanced design when the cost ratio is
2, which is relatively small. The quantity on the x-axis is
y

RD
(θ), which, we recall, does not have a meaningful inter-

pretation but does serve to translate the four parameter
ranges into one overall range. For the Samoan Women’s
Health study, for RD, the minimum value of y

RD
(θ), which is

0.22, occurs when (π1, π2, ρ1, ρ2) = (0.5, 0.2, 0.3, 0.05) and the
maximum value, which is 2.97, occurs when (π1, π2, ρ1, ρ2) =
(0.3, 0.3, 0.05, 0.3). We observe that over the whole range of
y

RD
(θ), the lowest RCE for the maximin optimal design is

about 0.91, while the lowest RCE for the balanced design is
about 0.83. In addition, for a larger portion of the range of
y

RD
(θ), the RCE of the maximin optimal design is larger than

that of the balanced design.
Figure 1b shows results for cost ratio γ = 5. We observe

that the RCE of the maximin optimal design is always larger
than 0.92, while the RCEs of balanced designs can be as low
as 0.66. In addition, the RCE of the maximin optimal design
exceeds than that of the balanced design for almost the whole
range of y

RD
(θ), suggesting that the maximin optimal design

greatly outperforms the balanced design when the cost ratio
is 5.

Figure 1c and 1d show RCEs for the outcome measure RR
when the cost ratio is γ = 2 and 5. Here, y

RR
(θ) ranges from

about 0.2–18. From both plots, we observe that the maximin
optimal design outperforms the balanced design over almost
the entire range of possible parameter values. The lowest
RCEs of the balanced designs are less than 0.6 and 0.4 for
γ = 2 and γ = 5, respectively, and both are lower than those
in Figure 1a and 1b . This suggests that if the outcome mea-
sure is RR rather than RD, the performance of the balanced
design is more sensitive to mis-specified parameters and the

maximin optimal design is more helpful to avoid low RCE
whether the cost in the intervention arm is twice or five times
that in the control arm.

Figure 1e and 1f shows RCEs for OR for the cost ratios γ =
2 and 5. The lowest RCEs of the maximin design are larger
than 0.90, and it clearly outperforms the balanced design for
almost all possible parameter values. Note that the lowest
RCEs of the balanced design are about 0.75 and 0.57 for γ = 2
and γ = 5, respectively, and both are lower than those for RD
but larger than those for RR. The implication is that the
balanced design is less sensitive for estimating OR than for
estimating RR but more sensitive than estimating RD. The
upshot is that the maximin optimal design is again helpful to
avoid having a low RCE.

In the Samoan Women’s Health Study, the planned out-
come analysis involved estimating the OR using generalized
estimating equations (GEE). According to Table 5, the max-
imin allocation value is 0.272 and the maximin optimal design
would allocate 17 churches to the intervention condition and
44 to the control condition. From Figure 1f, we see that the
maximin design does an excellent job of guarding against low
RCE. The maximin optimal design is generally more efficient
(i.e., has a larger RCE) than the balanced design and is robust
to mis-specifications of the ICCs and the success rates in the
two arms. While some investigators may not be comfortable
with such an unequal allocation and may prefer to adjust it,
this information can be useful as part of the overall study
planning process and can lead to designs that are superior to
a default balanced design.

5. Discussion

Much of the research in finding optimal allocation schemes
for a CRT involve locally optimal designs in which the design
depends on the success rates and ICCs, which are typi-
cally unknown in advance. Such single best guesses for these
parameters can result in substantial loss in efficiency if these
parameters are mis-specified. In this article, we provide a
novel approach to designing a two-arm CRT that allows
a range of plausible values to be specified for each of the
design parameters. The approach is flexible and applies when
the intervention effect is measured in terms of RD, RR, or
OR. We provide closed form formulae for the optimal pro-
portions of equal-sized clusters in the two arms for three
common outcome measures when we have a predetermined
fixed number of clusters. Our optimal design maximizes a
cost efficiency measure that combines the precision of the
estimated intervention effect and cost of the study. We also
compare our proposed designs with the popular balanced
designs using the RCE measure and show that RCEs of a
balanced design can be very low relative to maximin optimal
designs.

We consider three treatment effect measures, RD, RR,
and OR, in our work. RR is often used in randomized con-
trolled trials and cohort studies and OR is typically used for
cross-sectional and case-control studies (Sistrom, Garvan, and
Grobbee, 2011). OR is also used in randomized controlled tri-
als (Knol and Duijnhoven, 2004). Ukoumunne et al (2008)
discussed how these measures can affect the results using the
GEE method of analysis. Because the same design can have
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Maximin Optimal Designs for CRTs 923

Figure 1. RCE of the maximin optimal design (solid line) and the balanced design (dashed line) for estimating the RD,
RR, and OR for cost ratios γ = 2 and γ = 5 when π1 ∈ [0.3, 0.6], π2 ∈ [0.2, 0.3], ρ1 ∈ [0.05, 0.3], ρ2 ∈ [0.05, 0.3], and all clusters
have m = 14 subjects.
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different efficiencies under different outcome measures, inves-
tigators should ensure that they use the same measure for
their design and their analysis.

Throughout, we have assumed that the cluster size is
constant. In practice, cluster sizes often vary. Several com-
plications arise when adapting design methods for CRTs with
equal cluster size to CRTs with unequal cluster sizes. For
example, in the latter case, there is now a choice of several
different weighting schemes for computing treatment effect
estimates and several different variance estimators just for
RD alone (Kerry and Bland, 2001; Guittet, Ravaud, and
Giraudeau, 2006). Since the optimal design depends on the
specific estimators, deriving, and studying formulas for max-
imin optimal designs for CRTs with varying cluster sizes
for the various risk measures and weighting schemes would
require a substantial effort. Compounding the issue is that
there is currently no agreed upon method for designing a CRT
with unequal cluster sizes in the literature and so it is not clear
how to fairly evaluate performance of our proposed maximin
optimal designs when cluster sizes are unequal. However, we
can offer some general observations for designing a maximin
optimal CRT with unequal cluster sizes.

First, we explored how the maximin optimal allocation
varies as a function of the common cluster size for a range
of scenarios. The results in Web Appendix A.2 show that the
maximin allocation strategy generally varies very little as the
common cluster size is changed, except when cluster sizes are
small for some scenarios. This provides some assurance that
the method may work acceptably in many settings.

We were also able to find a result from Kang et al. (2005)
that seems helpful. They worked on sample size issues for
detecting a user-specified RD and derives the design effect
for Var(π̂) under varying cluster sizes when equal weights for
subjects (that is, weights equal to cluster size) are assumed.
The modified design effect has the formula 1 + [E(M) − 1]ρ +
E(M)ρCV 2, where E(M) is the expected cluster size and CV

is the coefficient of variation of cluster size. We amended our
optimal allocation formula for RD to use this design effect.
Plots in the Web Appendix A.3 show how the ratio of the
optimal allocation for varying cluster size to the optimal allo-
cation for constant cluster size varies as a function of the
CV for the RD measure for selected scenarios. A ratio of 1
indicates that the optimal allocations are the same for both
formulas. When CV=0, we have constant cluster size and
the two formulas coincide. As the CV is increased to 0.8, we
observe an increase or decrease of only about 4% in the ratio,
which is unlikely to make much difference after we round an
allocation to whole numbers of clusters. In practice, the CV
for cluster sizes is rarely larger than 0.8 ( Eldridge et al.,
2006; Carter, 2010). These figures also show that varying the
expected cluster size is likely to have little impact.

While we are unable to fully explore the impact of varying
cluster sizes on the maximin optimal allocation analytically,
the observations suggest that using the mean cluster size in
our formulas for CRTs with constant cluster size may produce
acceptable results in some settings. Researchers may wish to
conduct similar sensitivity analyzes for their particular user-
specified settings.

We conclude by noting that there are alternative design
approaches when there are unknown parameters in the model.

One option is to use a Bayesian approach where we first solicit
a joint prior distribution for all parameters and then find the
optimal proportion to arm 1 (or arm 2) that minimizes the
averaged expected variance with respect to the joint prior dis-
tribution of π1, π2, ρ1, and ρ2. Frequently, the priors for the
various parameters are assumed to be independent. Interest-
ingly, while there is work on analyzing binary outcome in IRTs
using Bayesian methods (Matthews, 1999), we were unable
to find papers that focus on constructing Bayesian optimal
designs for CRTs. One reason may be the practical difficul-
ties encountered in eliciting a joint prior distribution for ICCs
and the response rates.

In summary, the maximin method proposed in this work
may appear technically more complex but may actually be
simpler to implement in practice because it is relatively easy
to elicit a range of plausible values for each of the parame-
ters in the design problem. Additionally, the maximin optimal
design offers some protection against the worst case scenario
and is generally more robust than locally optimal designs.
Our results also show they tend to be more efficient than bal-
anced designs in terms of the RCE measure. Other design
work in a non-CRT setting also supports such a conclusion
when a maximin (or equivalently a minimax) optimal design
was used to estimate parameters in a nonlinear regression
model, see for example, King and Wong (2000), Tan, and
Berger (2002), Dette and Biedermann (2003), Biedermann
et al. (2004), Tekle, Tan, and Berger (2008), and Ouwens,
Rodriguez, Ortiz, and Martnez (2014).

6. Supplementary Materials

Web Appendices referenced in Sections 2, 3, and 5, which
include R code for implementing the methods, are available
with this article at the Biometrics website on Wiley Online
Library.
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